Commutative Algebra – Lecture 12: Algebras and Affine Fields (Oct. 16, 2013)

STEPHEN MELCZER

October 16, 2013

1 Finishing up another proof of Theorem A

Recall that last time we had

Proposition (Special case of Noether normalization). Let $R = F[a_1, \ldots, a_n]$ be an affine algebra and suppose that R is algebraic over $F[a_1]$. Then there exists $b \in R$ such that $R = F[b, a_2, \ldots, a_n]$ and R is integral over F[b].

Before our alternate proof, we need two observations. First,

Lemma 1. Suppose $C \subset R$ with $c \in C$ invertible in R and c^{-1} integral over C. Then $c^{-1} \in C$.

Proof. Since c^{-1} is integral over C we have

$$(c^{-1})^n + \sum_{i=0}^{n-1} a_i (c_{-1})^i = 0,$$

where the a_i are in C. Multiplying by c^{n-1} gives

$$c^{-1} = \sum_{i=0}^{n-1} (-a_i)c^{n-i-1},$$

and $n-i-1 \ge 0$ for $0 \le i \le n-1$.

Second,

Proposition. Suppose R is a domain and C is a subring of R such that R is integral over C. Then R is a field if and only if C is a field.

Proof. The forward implication follows from the previous lemma. For the reverse, take $a \in R$ with $a \neq 0$. Then $C[a] \subset R$ and C[a] is a field since we assumed C is a field and a is integral. Thus, $a^{-1} \in C[a] \subset R$ and R is a field.

Here is our old friend, which we will now prove without the Artin-Tate lemma.

Theorem 1.1 (Main Theorem A). An affine algebra $R = F[a_1, ..., a_n]$ is a field if and only if R is algebraic over F.

Proof. Our old proof of the reverse implication did not use the Artin-Tate lemma. For the forward, we may again show by induction that R is algebraic over the field of fractions of $F[a_1]$ and thus, clearing denominators, we may assume that R is algebraic over $F[a_1]$.

By the special case of Noether normalization, there exists $b \in R$ such that R is integral over F[b] and $R = F[b, a_2, \ldots, a_n]$. But R is a field, so by the previous proposition F[b] is a field. Thus, b is algebraic over F and by the transitivity of integral extensions we are done.

2 Dependence Relations

2.1 Introduction to dependence relations

Our first step is a language for general dependence relations.

Definition 2.1. A strong abstract dependence relation (s.a.d.r.) on a set V is a relation δ between elements of V and subsets of V, written $v\delta S$ satisfying (AD1–AD4)

- (AD1) $v \in S$ implies $v\delta S$
- (AD2) Suppose that $v\delta S$ and suppose that $S_1 \subset V$ such that for all $s \in S$, $s\delta S_1$, then $v\delta S_1$
- (AD3) (Steinitz exchange property) $v\delta(S \cup \{s\})$ and $v \not \delta S$ then $s\delta(S \cup \{v\})$
- (AD4) $v\delta S$ implies there exists $S_0 \subset S$ with $|S_0| < \infty$ with $v\delta S_0$

Let's see how this captures linear dependence. Let V be a vector space, and take $v\delta S$ to mean that v is in the span of S. Let's check the axioms:

- (AD1) If $v \in S$ then v is trivially in the span of S.
- (AD2) Suppose that $v \in \text{Span}(S)$. Then write

$$v = \sum_{I \in I} \alpha_i s_i,$$

for $\alpha_i \in F$, $s_i \in S$, and I a finite index set. Then if each $s_i \in \operatorname{Span}(S_1)$ we can write $s_i = \sum_{j \in J} \beta_{ij} t_j$ for $t_i \in S_0$ and J some finite index set, so $v = \sum_{j \in J} \sum_{i \in I} \alpha_i \beta_{ij} t_j$ which is in the span of S_1 .

- (AD3) Say v is in the span of $S \sup\{s\}$ so $v = \sum \alpha_i s_i + \beta s$ with $\alpha_i, \beta \in F$ and $s_i \in S$. Then $\beta \neq 0$ since $v \notin \operatorname{Span}(S)$ so $s = (1/\beta)v \sum (\alpha_i/\beta)s_i$ which is in the span of $S \cup \{v\}$.
- (AD4) Say $v \in \text{Span}(S)$. Then $v = \sum \alpha_i s_i$ with $s_i \in S$. But this sum is finite, so let S_0 be the set of the s_i in the finite sum. Then S_0 is finite and v is in its span.

Thus, linear dependence is an example of a s.a.d.r. Can we get linear algebra results?

2.2 Dependences in linear algebra

Definition 2.2. Let δ be a s.a.d.r. on V. We say that $S \subset V$ is independent if $s \not \delta(S \setminus \{s\})$ for all $s \in S$, and say that $S \subset V$ is dependent if it is not independent.

First, we show that we can extend an independent set by including an elements that does not depend on it.

Lemma 2. Let δ be a s.a.d.r. on V. Suppose that S is an independent subset of V and $v \not \delta S$. Then $S \cup \{v\}$ is independent.

Proof. Suppose that the result doesn't hold. Since $v \not \delta S$ there must exist $s \in S$ such that $s\delta((S \cup \{v\}) \setminus \{s\})$. But this is equivalent to $s\delta((S \setminus \{s\}) \cup \{v\})$, so by the Steinitz exchange property $v\delta((S \setminus \{s\}) \cup \{s\})$, a contradiction.

We now wish to look at what it means to be a basis.

Definition 2.3. Let δ be a s.a.d.r. on V. A base of V is a maximal independent subset of V.

To begin, we prove that any independent set can be extended to a basis.

Proposition. Let δ be a s.a.d.r. on V, and S be an independent subset of V. Then S is contained in a base of V.

Proof. Let S be the set of all independent subsets of V which contain S. Let $S_1 \subset S_2 \subset \cdots$ be a chain in S. Consider the union U of the S_i . Clearly $S \subset U$. Furthermore, suppose that U is not independent, i.e., there exists some $v \in U$ with $v\delta(U \setminus \{v\})$. By AD4, there exists a finite $T \subset U \setminus \{v\}$ with $v\delta T$. But as T is finite, at some point in the chain we have an S_j with $T \subset S_j$ and $V \in S_j$, contradicting S_j being independent. Since $S \in S$, Zorn's Lemma implies that S contains a maximal element.

We also see that every element of V depends on a basis, by maximality.

Proposition. Let δ be a s.a.d.r. on V and let B be a base of V. Then for all $v \in V$, $v\delta B$.

Proof. By maximality and our lemma about extending by a single element.

Next we show that all bases have the same cardinality.

Proposition. Let δ be a s.a.d.r. on V. Any two bases of V have the same cardinality.

Proof. We haven't talked about cardinals, so we will only prove it in the finite case. Let B, B' be bases, and write $B = \{b_1, \ldots, b_t\}$. By symmetry it suffices to show that $|B| \leq |B'|$. We claim that there exists $b'_1, \ldots, b'_k \in B'$ such that $\{b'_1, \ldots, b'_k, b_{k+1}, \ldots, b_t\}$ is independent. If k = 0 then the result holds. Now suppose we know that $\{b'_1, \ldots, b'_{k-1}, b_k, \ldots, b_t\}$ is independent. Then b_k $\delta\{b'_1, \ldots, b'_{k-1}, b_{k+1}, \ldots, b_t\}$, but $b_k\delta B'$. By AD2 with B' as S and $\{b'_1, \ldots, b'_{k-1}, b_{k+1}, \ldots, b_t\}$ as S_1 , we see that there exists some $b'_k \in B'$ such that b'_k $\delta\{b'_1, \ldots, b'_{k-1}, b_{k+1}, \ldots, b_t\}$ and by our previous lemma $\{b'_1, \ldots, b'_{k-1}, b'_k, b_{k+1}, \ldots, b_t\}$ is independent. This proves the claim, and applying the claim with t = k proves the theorem.

2.3Algebraic dependence

Now lets apply these ideas to algebraic dependence.

Definition 2.4. Let R be an F-algebra. Say $a_1, \ldots, a_n \in R$ are algebraically independent over F if $\psi: F[\lambda_1, \ldots, \lambda_n] \to F[a_1, \ldots, a_n]$ given by $\lambda_i \mapsto a_i$ is one-to-one. If a_1, \ldots, a_n are not independent, we say they are algebraically dependent.

Let R be an F-algebra and a domain – then we say that $a\delta S$ if a is algebraic over F[S].

Proposition. Suppose S is algebraically independent over F. Then $a\delta S$ if and only if $S \cup \{a\}$ is an algebraic dependence over F.

Proof. First, suppose that $S \cup \{a\}$ is algebraically dependent. Then there exists $f \in$ $F[\lambda_1,\ldots,\lambda_{n+1}]$ such that $f(s_1,\ldots,s_n,a)=0$ for $s_i\in S$. Since S is algebraically independent λ_{n+1} must appear in f. Let $g(\lambda_{n+1}) = f(s_1, \ldots, s_n, \lambda_{n+1})$, so $g \in F[S][\lambda_{n+1}]$ is still a nontrivial polynomial with g(a) = 0. Thus, a is algebraic over F[S] so $a\delta S$.

Finally, say $a\delta S$. Then there exists $g\in F[S][\lambda]$ such that g(a)=0. The coefficients of g involve only finitely many $s_i \in S$ – call these s_1, \ldots, s_n . If we view $g \in F[\lambda_1, \ldots, \lambda_n, \lambda]$ with $g(s_1,\ldots,s_n,a)=0$ so $S\cup\{a\}$ is algebraically dependent over F.

We are able to apply our general results above, due to the following proposition.

Proposition. This δ be a s.a.d.r.

Proof. AD1 Take $v \in S$. Then v is algebraic over F[S] as it satisfies $\lambda - v$.

- AD3 Take v algebraic over $F[S \cup \{s\}]$ but v not algebraic over F[S]. Then there exists $f \in F[S \cup \{s\}][\lambda]$ with f(v) = 0. But s appears non-trivially in f since $v \not \delta S$. If we view $f \in F[S][\lambda', \lambda]$ with f(s, v) = 0 then we have $f \in F[S \cup \{v\}][\lambda']$ with f(s) = 0and f is non-trivial in $F[S \cup \{v\}]$.
- AD4 Say v is algebraic over F[S] so f(v) = 0 for some $f \in F[S][\lambda]$. Only finitely many elements of S appear in the coefficients of f, call this set S_0 . Then $f \in F[S_0][\lambda]$ so $v\delta S_0$.
- AD2 Suppose $v\delta S$ and S_1 is such that $s\delta S$ for all $s\in S$. By AD4, there exists $S_0\subset S$ finite with $v\delta S_0$. Then v is algebraic over $F[S_0]$, and each $s_i \in S_0$ is algebraic over $F[S_1]$. Let K be the field of fractions of $F[S_0]$. Let L be the field of fractions of $F[S_1]$.

We have transitivity of algebraic extensions for fields. Note that each $s_i \in S_0$ is algebraic over L and v is algebraic over K. So by transitivity v is algebraic over L. Then there exists $f \in L[\lambda]$ with f(v) = 0. Clear denominators to get $f \in F[S_1]$ with q(v) = 0, so $v\delta S_1$.

This leads to the following definition.

Definition 2.5. Let R be an F-algebra and domain. Let B be a base with respect to δ . We say that B is a transcendence base, and that the size of B is the transcendence degree of R(which is well defined by our work above). This is written $tr.deq_F(R)$.

References

[1] L.H. Rowen, ${\it Graduate~Algebra:~Commutative~View},$ American Mathematical Society, 2006.