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1 Finishing up another proof of Theorem A

Recall that last time we had

Proposition (Special case of Noether normalization). Let R = F [a1, . . . , an] be an affine
algebra and suppose that R is algebraic over F [a1]. Then there exists b ∈ R such that
R = F [b, a2, . . . , an] and R is integral over F [b].

Before our alternate proof, we need two observations. First,

Lemma 1. Suppose C ⊂ R with c ∈ C invertible in R and c−1 integral over C. Then
c−1 ∈ C.

Proof. Since c−1 is integral over C we have

(
c−1
)n

+
n−1∑
i=0

ai (c−1)
i = 0,

where the ai are in C. Multiplying by cn−1 gives

c−1 =
n−1∑
i=0

(−ai)cn−i−1,

and n− i− 1 ≥ 0 for 0 ≤ i ≤ n− 1.

Second,

Proposition. Suppose R is a domain and C is a subring of R such that R is integral over
C. Then R is a field if and only if C is a field.

Proof. The forward implication follows from the previous lemma. For the reverse, take a ∈ R
with a 6= 0. Then C[a] ⊂ R and C[a] is a field since we assumed C is a field and a is integral.
Thus, a−1 ∈ C[a] ⊂ R and R is a field.
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Here is our old friend, which we will now prove without the Artin-Tate lemma.

Theorem 1.1 (Main Theorem A). An affine algebra R = F [a1, . . . , an] is a field if and only
if R is algebraic over F .

Proof. Our old proof of the reverse implication did not use the Artin-Tate lemma. For the
forward, we may again show by induction that R is algebraic over the field of fractions of
F [a1] and thus, clearing denominators, we may assume that R is algebraic over F [a1].

By the special case of Noether normalization, there exists b ∈ R such that R is integral
over F [b] and R = F [b, a2, . . . , an]. But R is a field, so by the previous proposition F [b]
is a field. Thus, b is algebraic over F and by the transitivity of integral extensions we are
done.

2 Dependence Relations

2.1 Introduction to dependence relations

Our first step is a language for general dependence relations.

Definition 2.1. A strong abstract dependence relation (s.a.d.r.) on a set V is a relation δ
between elements of V and subsets of V , written vδS satisfying (AD1–AD4)

(AD1) v ∈ S implies vδS

(AD2) Suppose that vδS and suppose that S1 ⊂ V such that for all s ∈ S, sδS1, then vδS1

(AD3) (Steinitz exchange property) vδ(S ∪ {s}) and v 6 δS then sδ(S ∪ {v})

(AD4) vδS implies there exists S0 ⊂ S with |S0| <∞ with vδS0

Let’s see how this captures linear dependence. Let V be a vector space, and take vδS to
mean that v is in the span of S. Let’s check the axioms:

(AD1) If v ∈ S then v is trivially in the span of S.

(AD2) Suppose that v ∈ Span(S). Then write

v =
∑
I∈I

αisi,

for αi ∈ F , si ∈ S, and I a finite index set. Then if each si ∈ Span(S1) we can write
si =

∑
j∈J βijtj for ti ∈ S0 and J some finite index set, so v =

∑
j∈J
∑

i∈I αiβijtj which
is in the span of S1.

(AD3) Say v is in the span of S sup{s} so v =
∑
αisi + βs with αi, β ∈ F and si ∈ S. Then

β 6= 0 since v /∈ Span(S) so s = (1/β)v −
∑

(αi/β)si which is in the span of S ∪ {v}.

(AD4) Say v ∈ Span(S). Then v =
∑
αisi with si ∈ S. But this sum is finite, so let S0 be

the set of the si in the finite sum. Then S0 is finite and v is in its span.

Thus, linear dependence is an example of a s.a.d.r. Can we get linear algebra results?
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2.2 Dependences in linear algebra

Definition 2.2. Let δ be a s.a.d.r. on V . We say that S ⊂ V is independent if s 6 δ(S \ {s})
for all s ∈ S, and say that S ⊂ V is dependent if it is not independent.

First, we show that we can extend an independent set by including an elements that does
not depend on it.

Lemma 2. Let δ be a s.a.d.r. on V . Suppose that S is an independent subset of V and
v 6 δS. Then S ∪ {v} is independent.

Proof. Suppose that the result doesn’t hold. Since v 6 δS there must exist s ∈ S such that
sδ((S ∪{v}) \ {s}). But this is equivalent to sδ((S \ {s})∪{v}), so by the Steinitz exchange
property vδ((S \ {s}) ∪ {s}), a contradiction.

We now wish to look at what it means to be a basis.

Definition 2.3. Let δ be a s.a.d.r. on V . A base of V is a maximal independent subset of
V .

To begin, we prove that any independent set can be extended to a basis.

Proposition. Let δ be a s.a.d.r. on V , and S be an independent subset of V . Then S is
contained in a base of V .

Proof. Let S be the set of all independent subsets of V which contain S. Let S1 ⊂ S2 ⊂ · · ·
be a chain in S. Consider the union U of the Si. Clearly S ⊂ U . Furthermore, suppose that
U is not independent, i.e., there exists some v ∈ U with vδ(U \ {v}). By AD4, there exists
a finite T ⊂ U \ {v} with vδT . But as T is finite, at some point in the chain we have an Sj

with T ⊂ Sj and v ∈ Sj, contradicting Sj being independent. Since S ∈ S, Zorn’s Lemma
implies that S contains a maximal element.

We also see that every element of V depends on a basis, by maximality.

Proposition. Let δ be a s.a.d.r. on V and let B be a base of V . Then for all v ∈ V , vδB.

Proof. By maximality and our lemma about extending by a single element.

Next we show that all bases have the same cardinality.

Proposition. Let δ be a s.a.d.r. on V . Any two bases of V have the same cardinality.

Proof. We haven’t talked about cardinals, so we will only prove it in the finite case. Let
B,B′ be bases, and write B = {b1, . . . , bt}. By symmetry it suffices to show that |B| ≤ |B′|.

We claim that there exists b′1, . . . , b
′
k ∈ B′ such that {b′1, . . . , b′k, bk+1, . . . , bt} is indepen-

dent. If k = 0 then the result holds. Now suppose we know that {b′1, . . . , b′k−1, bk, . . . , bt}
is independent. Then bk 6 δ{b′1, . . . , b′k−1, bk+1, . . . , bt}, but bkδB

′. By AD2 with B′ as S
and {b′1, . . . , b′k−1, bk+1, . . . , bt} as S1, we see that there exists some b′k ∈ B′ such that
b′k 6 δ{b′1, . . . , b′k−1, bk+1, . . . , bt} and by our previous lemma {b′1, . . . , b′k−1, b′k, bk+1, . . . , bt} is
independent. This proves the claim, and applying the claim with t = k proves the theo-
rem.
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2.3 Algebraic dependence

Now lets apply these ideas to algebraic dependence.

Definition 2.4. Let R be an F -algebra. Say a1, . . . , an ∈ R are algebraically independent
over F if ψ : F [λ1, . . . , λn] → F [a1, . . . , an] given by λi 7→ ai is one-to-one. If a1, . . . , an are
not independent, we say they are algebraically dependent.

Let R be an F -algebra and a domain – then we say that aδS if a is algebraic over F [S].

Proposition. Suppose S is algebraically independent over F . Then aδS if and only if S∪{a}
is an algebraic dependence over F .

Proof. First, suppose that S ∪ {a} is algebraically dependent. Then there exists f ∈
F [λ1, . . . , λn+1] such that f(s1, . . . , sn, a) = 0 for si ∈ S. Since S is algebraically inde-
pendent λn+1 must appear in f . Let g(λn+1) = f(s1, . . . , sn, λn+1), so g ∈ F [S][λn+1] is still
a nontrivial polynomial with g(a) = 0. Thus, a is algebraic over F [S] so aδS.

Finally, say aδS. Then there exists g ∈ F [S][λ] such that g(a) = 0. The coefficients of g
involve only finitely many si ∈ S – call these s1, . . . , sn. If we view g ∈ F [λ1, . . . , λn, λ] with
g(s1, . . . , sn, a) = 0 so S ∪ {a} is algebraically dependent over F .

We are able to apply our general results above, due to the following proposition.

Proposition. This δ be a s.a.d.r.

Proof. AD1 Take v ∈ S. Then v is algebraic over F [S] as it satisfies λ− v.

AD3 Take v algebraic over F [S ∪ {s}] but v not algebraic over F [S]. Then there exists
f ∈ F [S ∪ {s}][λ] with f(v) = 0. But s appears non-trivially in f since v 6 δS. If we
view f ∈ F [S][λ′, λ] with f(s, v) = 0 then we have f ∈ F [S ∪ {v}][λ′] with f(s) = 0
and f is non-trivial in F [S ∪ {v}].

AD4 Say v is algebraic over F [S] so f(v) = 0 for some f ∈ F [S][λ]. Only finitely many
elements of S appear in the coefficients of f , call this set S0. Then f ∈ F [S0][λ] so
vδS0.

AD2 Suppose vδS and S1 is such that sδS for all s ∈ S. By AD4, there exists S0 ⊂ S finite
with vδS0. Then v is algebraic over F [S0], and each si ∈ S0 is algebraic over F [S1].
Let K be the field of fractions of F [S0]. Let L be the field of fractions of F [S1].

We have transitivity of algebraic extensions for fields. Note that each si ∈ S0 is
algebraic over L and v is algebraic over K. So by transitivity v is algebraic over L.
Then there exists f ∈ L[λ] with f(v) = 0. Clear denominators to get f ∈ F [S1] with
g(v) = 0, so vδS1.

This leads to the following definition.

Definition 2.5. Let R be an F -algebra and domain. Let B be a base with respect to δ. We
say that B is a transcendence base, and that the size of B is the transcendence degree of R
(which is well defined by our work above). This is written tr.degF (R).
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