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1 Finishing up another proof of Theorem A

Recall that last time we had

Proposition (Special case of Noether normalization). Let R = Flay,...,a,] be an affine
algebra and suppose that R is algebraic over Flai]. Then there exists b € R such that
R =F[b,ay,...,a,] and R is integral over F'[b].

Before our alternate proof, we need two observations. First,

Lemma 1. Suppose C C R with ¢ € C invertible in R and ¢! integral over C. Then
cled.
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Proof. Since ¢~ is integral over C' we have

n—1
()" + > ailen) =0,
i=0
where the a; are in C'. Multiplying by ¢"~! gives
n—1
Cil — (_ai)cnfifl7
=0
andn—i1—1>0for0<i<n—1. O

Second,

Proposition. Suppose R is a domain and C' is a subring of R such that R is integral over
C. Then R is a field if and only if C is a field.

Proof. The forward implication follows from the previous lemma. For the reverse, take a € R
with a # 0. Then Cla] C R and Cla] is a field since we assumed C'is a field and a is integral.
Thus, a™! € Cla] C R and R is a field. O



Here is our old friend, which we will now prove without the Artin-Tate lemma.

Theorem 1.1 (Main Theorem A). An affine algebra R = Flay, ..., a,] is a field if and only
if R is algebraic over F.

Proof. Our old proof of the reverse implication did not use the Artin-Tate lemma. For the
forward, we may again show by induction that R is algebraic over the field of fractions of
Fla,] and thus, clearing denominators, we may assume that R is algebraic over F'[ay].

By the special case of Noether normalization, there exists b € R such that R is integral
over F[b] and R = Fb,as,...,a,). But R is a field, so by the previous proposition F'[b]
is a field. Thus, b is algebraic over F' and by the transitivity of integral extensions we are
done. O]

2 Dependence Relations

2.1 Introduction to dependence relations

Our first step is a language for general dependence relations.

Definition 2.1. A strong abstract dependence relation (s.a.d.r.) on a set V' is a relation §
between elements of V' and subsets of V', written vd.S satisfying (AD1-AD4)

AD1) v € S implies v0.S

(
(AD2) Suppose that v0S and suppose that S; C V such that for all s € S, s651, then v.S;
(AD3) (Steinitz exchange property) vd(S U {s}) and v §S then s6(S U {v})

(

AD4) véS implies there exists Sy C S with |Sy| < oo with vd.Sy

Let’s see how this captures linear dependence. Let V' be a vector space, and take vd.S to
mean that v is in the span of S. Let’s check the axioms:

(AD1) If v € S then v is trivially in the span of S.
(AD2) Suppose that v € Span(S). Then write

vV = E ;S
Iel

for a; € F, s; € S, and I a finite index set. Then if each s; € Span(S;) we can write
S; = Z]EJ Bijt; for t; € Sy and J some finite index set, so v = ZjEJ > icr it which
is in the span of 5;.

(AD3) Say v is in the span of Ssup{s} so v =>_ «a;s; + s with «;, 5 € F and s; € S. Then
B # 0 since v ¢ Span(S) so s = (1/8)v — > _(«;/F)s; which is in the span of S U {v}.

(AD4) Say v € Span(S). Then v = ) a;s; with s; € S. But this sum is finite, so let Sy be
the set of the s; in the finite sum. Then S is finite and v is in its span.

Thus, linear dependence is an example of a s.a.d.r. Can we get linear algebra results?
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2.2 Dependences in linear algebra

Definition 2.2. Let § be a s.a.d.r. on V. We say that S C V' is independent if s §(S\ {s})
for all s € S, and say that S C V is dependent if it is not independent.

First, we show that we can extend an independent set by including an elements that does
not depend on it.

Lemma 2. Let § be a s.a.d.r. on V. Suppose that S is an independent subset of V and
v §S. Then S U{v} is independent.

Proof. Suppose that the result doesn’t hold. Since v #S there must exist s € S such that
s0((SU{v})\ {s}). But this is equivalent to sd((S'\ {s})U{v}), so by the Steinitz exchange
property vd((S \ {s}) U {s}), a contradiction. O

We now wish to look at what it means to be a basis.

Definition 2.3. Let § be a s.a.d.r. on V. A base of V' is a maximal independent subset of
V.

To begin, we prove that any independent set can be extended to a basis.

Proposition. Let § be a s.a.d.r. onV, and S be an independent subset of V.. Then S is
contained in a base of V.

Proof. Let § be the set of all independent subsets of V' which contain S. Let S C Sy C - --
be a chain in §. Consider the union U of the S;. Clearly S C U. Furthermore, suppose that
U is not independent, i.e., there exists some v € U with vd(U \ {v}). By AD4, there exists
a finite 7" C U \ {v} with v0T. But as T is finite, at some point in the chain we have an S
with 7" C S and v € S;, contradicting S; being independent. Since S € &, Zorn’s Lemma
implies that S contains a maximal element. O

We also see that every element of V' depends on a basis, by maximality.
Proposition. Let 6 be a s.a.d.r. onV and let B be a base of V.. Then for allv € V, viB.

Proof. By maximality and our lemma about extending by a single element. O

Next we show that all bases have the same cardinality.
Proposition. Let § be a s.a.d.r. on V. Any two bases of V have the same cardinality.

Proof. We haven’t talked about cardinals, so we will only prove it in the finite case. Let
B, B’ be bases, and write B = {by,...,b;}. By symmetry it suffices to show that |B| < |B’|.

We claim that there exists b,...,b, € B’ such that {b},..., 0}, bgs1,...,0} is indepen-
dent. If k& = 0 then the result holds. Now suppose we know that {b},...,b0,_;,bk,...,b:}
is independent. Then by A{b),...,b0. 1, bks1,...,0:}, but bpdB’. By AD2 with B’ as S
and {b},..., 0, _1,bgs1,...,b:} as S1, we see that there exists some b, € B’ such that
b, A{0y,..., 0, 1, bks1,...,b:} and by our previous lemma {b},..., 0, 1,b}, bgs1,..., b} is
independent. This proves the claim, and applying the claim with ¢ = k£ proves the theo-
rem. O



2.3 Algebraic dependence

Now lets apply these ideas to algebraic dependence.

Definition 2.4. Let R be an F-algebra. Say aq,...,a, € R are algebraically independent
over F if ¢ : F[A,...,\] = Flaq,...,a,] given by \; — a; is one-to-one. If ay, ..., a, are
not independent, we say they are algebraically dependent.

Let R be an F-algebra and a domain — then we say that adS if a is algebraic over F[S].

Proposition. Suppose S is algebraically independent over F'. Then adS if and only if SU{a}
18 an algebraic dependence over F'.

Proof. First, suppose that S U {a} is algebraically dependent. Then there exists f €
F[A1, ..., A\uy1] such that f(s1,...,8,,a) = 0 for s; € S. Since S is algebraically inde-
pendent A, ; must appear in f. Let g(Any1) = f(S1,..., Sn, Ant1), 80 g € F[S][An41] is still
a nontrivial polynomial with g(a) = 0. Thus, a is algebraic over F[S] so adS.

Finally, say adS. Then there exists g € F[S][A] such that g(a) = 0. The coefficients of g
involve only finitely many s; € S — call these s1,...,s,. If we view g € F[\q,..., \,, A] with
g(s1,...,8n,a) =080 SU{a} is algebraically dependent over F. O

We are able to apply our general results above, due to the following proposition.
Proposition. This § be a s.a.d.r.
Proof. AD1 Take v € S. Then v is algebraic over F[S] as it satisfies A — v.

AD3 Take v algebraic over F[S U {s}| but v not algebraic over F[S]. Then there exists
f € F[SU{s}|[A] with f(v) = 0. But s appears non-trivially in f since v 4S. If we
view f € F[S]|[N,\] with f(s,v) = 0 then we have f € F[S U {v}][XN] with f(s) =0
and f is non-trivial in F[S U {v}].

AD4 Say v is algebraic over F[S] so f(v) = 0 for some f € F[S][A]. Only finitely many
elements of S appear in the coefficients of f, call this set Sp. Then f € F[Sy][\] so
'065’0.

AD2 Suppose v6S and S; is such that s05 for all s € S. By AD4, there exists Sy C S finite
with v8Sy. Then v is algebraic over F[Sp], and each s; € Sy is algebraic over F[S].
Let K be the field of fractions of F'[Sp]. Let L be the field of fractions of F[S}].

We have transitivity of algebraic extensions for fields. Note that each s; € Sy is
algebraic over L and v is algebraic over K. So by transitivity v is algebraic over L.
Then there exists f € L[A] with f(v) = 0. Clear denominators to get f € F[S;] with
g(v) =0, so vS;.

[

This leads to the following definition.

Definition 2.5. Let R be an F-algebra and domain. Let B be a base with respect to 6. We
say that B is a transcendence base, and that the size of B is the transcendence degree of R
(which is well defined by our work above). This is written tr.degr(R).
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